Quality Core Tools Training Course
Quality Core Tools are a set of methodologies developed primarily for the automotive industry to support the design and development, production, and continuous improvement of products and processes.
This instructor-led, live training (online or onsite) is aimed at beginner-level quality engineers who wish to learn how to use Quality Core Tools to ensure product quality in the manufacturing industry.
By the end of this training, participants will be able to:
- Understand the importance and integration of the Quality Core Tools.
- Master the concepts and application of APQP processes to facilitate effective product quality planning.
- Identify potential failures in products and processes, understand their impact on product quality, and implement actions to mitigate risks.
- Use statistical methods to monitor and control manufacturing processes, ensuring product quality and process efficiency.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Course Outline
Introduction to Quality Core Tools
Advanced Product Quality Planning (APQP)
Production Part Approval Process (PPAP)
Failure Mode and Effects Analysis (FMEA)
Statistical Process Control (SPC)
Measurement Systems Analysis (MSA)
Integrating Quality Core Tools into Quality Management Systems
Summary and Next Steps
Requirements
- Basic understanding of quality management systems
- Familiarity with manufacturing processes and environments
Audience
- Quality engineers
- Process engineers
Open Training Courses require 5+ participants.
Quality Core Tools Training Course - Booking
Quality Core Tools Training Course - Enquiry
Quality Core Tools - Consultancy Enquiry
Consultancy Enquiry
Upcoming Courses
Related Courses
Autonomous and Connected Electric Vehicles
14 HoursThis instructor-led, live training in Estonia (online or onsite) is aimed at advanced-level professionals who wish to develop in-depth knowledge of autonomous EV systems, connectivity features, and the cybersecurity challenges associated with connected and autonomous vehicles.
By the end of this training, participants will be able to:
- Implement autonomous driving algorithms and control systems.
- Integrate V2X communication for connected vehicle networks.
- Address cybersecurity risks in autonomous EVs.
- Develop real-time processing solutions for autonomous navigation.
Advanced Electric Vehicle Design and Development
14 HoursThis instructor-led, live training in Estonia (online or onsite) is aimed at advanced-level automotive professionals who wish to develop expertise in designing, developing, and optimizing electric vehicles, focusing on next-generation technologies and sustainable mobility solutions.
By the end of this training, participants will be able to:
- Design efficient and aerodynamic EV architectures.
- Integrate energy-optimized powertrains and battery systems.
- Apply innovative design concepts for enhanced performance.
- Develop prototypes using advanced simulation tools.
Advanced Path Planning Algorithms for Autonomous Vehicles
21 HoursThis instructor-led, live training in Estonia (online or onsite) is aimed at advanced-level robotics engineers and AI researchers who wish to implement sophisticated path planning algorithms to enhance autonomous vehicle performance.
By the end of this training, participants will be able to:
- Understand the theoretical foundations of advanced path planning algorithms.
- Implement algorithms such as RRT*, A*, and D* for real-time navigation.
- Optimize path planning for obstacle avoidance and dynamic environments.
- Integrate path planning algorithms with sensor data for enhanced accuracy.
- Evaluate the performance of various algorithms in practical scenarios.
AI and Deep Learning for Autonomous Driving
21 HoursThis instructor-led, live training in Estonia (online or onsite) is aimed at advanced-level data scientists, AI specialists, and automotive AI developers who wish to build, train, and optimize AI models for autonomous driving applications.
By the end of this training, participants will be able to:
- Understand the fundamentals of AI and deep learning in the context of autonomous vehicles.
- Implement computer vision techniques for real-time object detection and lane following.
- Utilize reinforcement learning for decision-making in self-driving systems.
- Integrate sensor fusion techniques for better perception and navigation.
- Build deep learning models to predict and analyze driving scenarios.
Autonomous Vehicle Safety and Risk Assessment
21 HoursThis instructor-led, live training in Estonia (online or onsite) is aimed at advanced-level safety engineers and automotive safety professionals who wish to develop comprehensive safety strategies for autonomous vehicles, including hazard analysis, functional safety assessments, and compliance with international standards.
By the end of this training, participants will be able to:
- Identify and assess safety risks associated with autonomous driving systems.
- Conduct hazard analysis and risk assessment using industry standards.
- Implement safety validation and verification methods for AV systems.
- Apply functional safety standards, such as ISO 26262 and SOTIF.
- Develop risk mitigation strategies for AV safety challenges.
Computer Vision for Autonomous Driving
21 HoursThis instructor-led, live training in Estonia (online or onsite) is aimed at intermediate-level AI developers and computer vision engineers who wish to build robust vision systems for autonomous driving applications.
By the end of this training, participants will be able to:
- Understand the fundamental concepts of computer vision in autonomous vehicles.
- Implement algorithms for object detection, lane detection, and semantic segmentation.
- Integrate vision systems with other autonomous vehicle subsystems.
- Apply deep learning techniques for advanced perception tasks.
- Evaluate the performance of computer vision models in real-world scenarios.
Ethics and Legal Aspects of Autonomous Driving
14 HoursThis instructor-led, live training in Estonia (online or onsite) is aimed at beginner-level professionals who wish to explore the ethical dilemmas and legal frameworks surrounding autonomous vehicles.
By the end of this training, participants will be able to:
- Understand the ethical implications of AI-driven decision-making in autonomous vehicles.
- Analyze global legal frameworks and policies regulating self-driving cars.
- Examine liability and accountability in the event of autonomous vehicle accidents.
- Evaluate the balance between innovation and public safety in autonomous driving laws.
- Discuss real-world case studies involving ethical dilemmas and legal disputes.
Electric Vehicle Business Models and Market Trends
7 HoursThis instructor-led, live training in Estonia (online or onsite) is aimed at beginner-level business professionals who wish to understand the dynamics of the EV market, develop strategic insights, and assess the economic potential of electric mobility solutions.
By the end of this training, participants will be able to:
- Analyze global and regional trends in the electric vehicle market.
- Evaluate different business models for EV production and distribution.
- Identify investment opportunities and challenges in the EV sector.
- Understand the role of government policies in shaping the EV industry.
EV Battery Recycling and Sustainability Practices
14 HoursThis instructor-led, live training in Estonia (online or onsite) is aimed at intermediate-level professionals who wish to develop practical skills in evaluating EV battery lifecycle, implementing recycling technologies, and addressing sustainability challenges in the automotive industry.
By the end of this training, participants will be able to:
- Analyze the lifecycle of EV batteries and their environmental impact.
- Identify recycling techniques for various battery chemistries.
- Implement sustainable practices for battery reuse and disposal.
- Formulate policies to support circular economy initiatives.
EV Charging Infrastructure and Smart Grid Integration
14 HoursThis instructor-led, live training in Estonia (online or onsite) is aimed at intermediate-level professionals who wish to develop skills in designing, managing, and integrating EV charging infrastructure with smart grids to support sustainable mobility and energy management.
By the end of this training, participants will be able to:
- Design efficient and scalable EV charging stations.
- Analyze the grid impact of widespread EV adoption.
- Integrate renewable energy sources into EV charging systems.
- Implement smart charging strategies to balance grid load.
EV Maintenance and Troubleshooting for Technicians
14 HoursThis instructor-led, live training in Estonia (online or onsite) is aimed at intermediate-level automotive professionals who wish to develop practical skills in diagnosing, maintaining, and troubleshooting electric vehicle systems, including motors, batteries, and onboard software.
By the end of this training, participants will be able to:
- Perform routine maintenance on electric vehicle components.
- Diagnose common issues with EV powertrains and battery systems.
- Use diagnostic tools and software for fault identification.
- Implement safe practices when handling high-voltage systems.
Introduction to Autonomous Vehicles: Concepts and Applications
14 HoursThis instructor-led, live training in Estonia (online or onsite) is aimed at beginner-level professionals and enthusiasts who wish to understand the fundamental concepts, technologies, and applications of autonomous vehicles.
By the end of this training, participants will be able to:
- Understand the key components and working principles of autonomous vehicles.
- Explore the role of AI, sensors, and real-time data processing in self-driving systems.
- Analyze different levels of vehicle autonomy and their real-world applications.
- Examine the ethical, legal, and regulatory aspects of autonomous mobility.
- Gain hands-on exposure to autonomous vehicle simulations.
Multi-Sensor Data Fusion for Autonomous Navigation
21 HoursThis instructor-led, live training in Estonia (online or onsite) is aimed at advanced-level sensor fusion specialists and AI engineers who wish to develop multi-sensor fusion algorithms and optimize real-time navigation in autonomous systems.
By the end of this training, participants will be able to:
- Understand the fundamentals and challenges of multi-sensor data fusion.
- Implement sensor fusion algorithms for real-time autonomous navigation.
- Integrate data from LiDAR, cameras, and RADAR for perception enhancement.
- Analyze and evaluate fusion system performance under various conditions.
- Develop practical solutions for sensor noise reduction and data alignment.
Sensor Technologies in Autonomous Vehicles
21 HoursThis instructor-led, live training in Estonia (online or onsite) is aimed at intermediate-level engineers, automotive professionals, and IoT specialists who wish to understand the role of sensors in self-driving cars, covering LiDAR, radar, cameras, and sensor fusion techniques.
By the end of this training, participants will be able to:
- Understand the different types of sensors used in autonomous vehicles.
- Analyze sensor data for real-time vehicle perception and decision-making.
- Implement sensor fusion techniques to improve vehicle accuracy and safety.
- Optimize sensor placement and calibration for enhanced autonomous driving performance.
Vehicle-to-Everything (V2X) Communication for Autonomous Cars
21 HoursThis instructor-led, live training in Estonia (online or onsite) is aimed at intermediate-level network engineers and automotive IoT developers who wish to understand and implement V2X communication technologies for autonomous vehicles.
By the end of this training, participants will be able to:
- Understand the fundamental concepts of V2X communication.
- Analyze V2V, V2I, V2P, and V2N communication models.
- Implement V2X protocols such as DSRC and C-V2X.
- Develop simulations for connected vehicle environments.
- Address cybersecurity and privacy challenges in V2X networks.